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Abstract. A critical challenge to creating effective open multi-agent systems is allowing
them to operate effectively in the face of potential failures. In this paper we present an
experimental evaluation of a set of domain-independent services designed to handle the
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1. The Challenge

A critical challenge to creating effective agent-based systems is making them robust in the
face of potential failures.  Most work to date on multi-agent systems has focused, however,
on supporting such basic functionality such as matchmaking (Decker, Sycara et al. 1997)
and inter-agent communication (Finin, Labrou et al. 1997), and has typically assumed
relatively simple closed environments where the infrastructure is reliable and agents can be
trusted to work correctly (Hägg 1996). It is clear however that in many if not most
important applications for multi-agent technology, these assumptions will not hold. We can
expect, in contrast, to find:

• Unreliable Infrastructures. In large distributed systems like the Internet, unpredictable
node and link failures may cause agents to die unexpectedly, messages to be delayed,
garbled or lost, etc.

• Non-compliant agents. In open systems, agents are developed independently, come and
go freely, and thus can not always be trusted to follow the rules properly due to bugs,
bounded rationality, programmer malice and so on. This can be expected to be
especially prevalent and important in contexts such as electronic commerce where
there may be significant incentives for fraud.

• Emergent dysfunctions. Emerging multi-agent system applications are likely to involve
complex and dynamic interactions that can lead to emergent dysfunctional behaviors
with the relatively lightweight multi-agent coordination mechanisms that have proved
most popular to date. This is especially true since agent societies operate in a realm
where relative coordination, communication and computational costs and capabilities
can be radically different from those in human society, leading to behaviors with which
we have little previous experience. It has been argued, for example, that 1987’s stock
crash was due in part to the action of computer-based “program traders” that were able
to execute trade decisions at unprecedented speed and volume, leading to
unprecedented stock market volatility (Waldrop 1987).

All of these departures from “ideal” multi-agent system behavior can be called exceptions,
and the results of inadequate exception handling include the potential for poor
performance, system shutdowns, and security vulnerabilities.

In this paper we present an experimental evaluation of a set of domain-independent
exception handling services we have developed to address these challenges, applied to the
well-known “Contract Net” multi-agent coordination protocol. We show that these services
produce more effective exception handling behavior than standard existing techniques,
while allowing simpler agent implementations. The remainder of this paper will introduce
the contract net protocol, outline our exception handling approach, describe the
experiments used to evaluate it, consider the contributions of this work, and discuss
directions for future research.

2. The Contract Net Protocol
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The “Contract Net” (Smith and Davis 1978) (henceforth called CNET) is a protocol for
matching up tasks with agents in multi-agent systems. CNET and its many variants is
probably the most widely-used agent system protocol, presumably because of its
intuitiveness, direct applicability to many common problems, simplicity and relative
efficiency. CNET has been applied to many domains including manufacturing control
(Baker 1988), tactical simulations (Boettcher, Perschbacher et al. 1987), transportation
scheduling (Bouzid and Mouaddib 1998), and distributed sensing (Smith and Davis 1978).

The CNET protocol operates as follows (Figure 1):

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

Figure 1. A simple version of the Contract Net protocol.

An agent (hereafter called the “contractor”) identifies a task that it cannot or chooses not to
do locally and attempts to find another agent (hereafter called the “subcontractor”) to
perform the task. It begins by creating a Request For Bids (RFB) which describes the
desired work, and then sending it to potential subcontractors (typically identified using a
matchmaker that indexes agents by the skills they claim to have). Interested subcontractors
respond with bids (specifying such issues as the time needed to perform the task) from
which the contractor selects a winner. The winning agent, once notified of the award,
performs the work (potentially subcontracting out its own subtasks as needed) and submits
the results to the contractor.

CNET is prone to a wide range of potential exceptions from all three of the categories
(unreliable infrastructures, non-compliant agents, emergent dysfunctions) described above.
A more exhaustive analysis of these failure modes will appear in a forthcoming paper; for
now we will limit ourselves to three examples:

- Agent death: If a CNET agent dies there are several immediate consequences. If the
agent is acting as a subcontractor, its customer clearly will not receive the results it
is expecting. In addition, if the agent has subcontracted out one or more subtasks,
these subtasks and all the sub-sub-… tasks created to achieve them become
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“orphaned”, in the sense that there is no longer any real purpose for them and they
are uselessly tying up potentially scarce subcontractor resources. Finally, if the
system uses a matchmaker, it will continue to offer the now dead subcontractor as a
candidate (a “false positive”), resulting in wasted message traffic.

- Fraudulent [sub]contractor: A buggy or intentionally malicious CNET agent can
wreak havoc through fraudulent advertising, bidding or subcontracting. Imagine,
for example, an agent that falsely informs the matchmaker that it has a
comprehensive set of skills, sends in highly attractive but fraudulent bids (e.g.
specifying it can do any task almost instantaneously) for all the RFBs it receives,
and once it wins the awards returns either no results, or simply incorrect ones. The
result would be that many if not all of the system’s tasks would be awarded to a
non-performing agent.

- Resource poaching: It is typical for CNET systems to annotate tasks with priorities,
so that when a subcontractor is considering several RFBs, it will bid (first) for the
RFB with the greatest priority. One emergent dysfunction that can occur in such
contexts is “resource poaching”, wherein a slew of low-priority but long-duration
tasks tie up the subcontractors, thereby freezing out resources needed for the
higher-priority tasks that arrive later (Chia, Neiman et al. 1998). This does not
represent an error per se, but rather an unexpected consequence of the protocol
when applied in a complex environment.

The standard exception handling mechanism used in CNET, as in many distributed
protocols, is timeout/retry: If no results are received by the deadline the subcontractor
promised, for example, a contractor will re-start the subcontracting process for that task,
sending a new RFB. This approach does handle the agent death exception, but rather
inefficiently, since it does not eliminate orphaned tasks, does not remove false positives
from the matchmaker, and is prone to an “unzippering” effect, wherein the death of an
agent performing a subtask can cause cascading timeouts and retries for its customers, the
customers of its customers, and so on, all the way up to the CNET agent at the top of the
task decomposition tree. The timeout/retry approach will not, of course, prevent a
contractor from repeatedly falling prey to a fraudulent CNET agent, nor will it help with
resource poaching.

It is certainly imaginable that the CNET protocol could be elaborated to allow agents to
handle a wider range of exceptions, and most agent system exception handling research has
in fact taken this direction.  Even the original CNET protocol (Smith and Davis 1978)
included such augmentations as an “immediate response bid’, which allowed a contractor
to determine whether the lack of bids was due to all eligible subcontractors being busy (in
which case a retry is appropriate) or due to the outright lack of subcontractors with the
necessary skills (in which case presumably the system manager/user should be informed).
This “survivalist” approach to multi-agent exception handling faces, however, a number of
serious shortcomings:
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First of all, it greatly increases the burden on agent developers. It is predicated upon
“compiling in” potentially complicated and carefully coordinated exception handling
behaviors into all problem-solving agents. Developers must anticipate and correctly
prepare for all the exceptions the agent may encounter in all the environments in which it
may operate. This is difficult at best, as the agent environment may be difficult to
anticipate, and in any case no systematic methodology has been available to help identify
relevant exception types and resolution strategies. Making changes in exception handling
behavior is difficult because it potentially requires coordinated changes in multiple agents
created by different developers. Agents become harder to maintain, understand and reuse
because a potentially large body of exception handling code obscures the relatively simple
normative behavior of an agent.

Perhaps more seriously, this approach can result in poor exception handling performance.
Agents may not comply properly with these more sophisticated protocols, or violate some
of their underlying assumptions. Some protocols, for example, are based on game-theoretic
analyses (Sandholm, Sikka et al. 1999) and assume that all agents will be rational utility
maximizers, which obviously may not always be the case. All agent interactions are
slowed down by the overhead incurred by these heavyweight protocols. Some kinds of
interventions (such as “killing” a broken agent that is uselessly monopolizing scarce
resources) may be difficult to implement because the agents do not have the established
legitimacy needed to apply such interventions to their peers. Finally, finding the
appropriate responses to some kinds of exceptions (typically emergent exceptions such as
resource poaching) requires that the agents achieve a more or less global view of the multi-
agent system state, which is notoriously difficult to create without heavy bandwidth
requirements.

3. Our Approach: Domain-Independent Exception Handling Services

It is for this reason that we have been creating a set of services that offload the exception
handling burden from problem solving agents. We call this the “citizen” approach by
analogy to the way exceptions are handled in human society. In such contexts, citizens
adopt relatively simple and optimistic rules of behavior, and rely on a whole host of social
institutions (the police, lawyers and law courts, disaster relief agencies, the Security and
Exchange Commission, the Better Business Bureau, and so on) to handle most exceptions.
This is generally a good tradeoff because such institutions are able, by virtue of specialized
expertise, widely accepted legitimacy and economies of scale, to deal with exceptions
more effectively and efficiently than individual citizens, while making relatively few
demands of them (e.g. pay your taxes, obey police officers, report crimes).

The key insight that makes this approach workable in the multi-agent system context is the
simple but powerful notion that highly reusable, domain-independent exception handling
expertise can be usefully separated from the knowledge used by agents to do their
“normal” work. There is substantial evidence for the validity of this claim. Early work on
expert systems development revealed that it is useful to separate domain-specific problem
solving and generic control knowledge (Barnett 1984; Gruber 1989). Analogous insights
were also confirmed in the domains of collaborative design conflict management (Klein
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1989; Klein 1991) and workflow exception management (Klein 1997). We have identified
over 100 such strategies to date; in the CNET domain, some examples include:

- To detect agent death, periodically poll active subcontractors. Consolidate polling
in order to minimize the number of “are you alive?” messages agents must respond
to. If an agent dies, cancel any orphaned tasks that may result, clear the agent
record from the matchmaker(s), and instruct the contractors for that agent to re-run
the bidding process for the failed tasks. Keep track of agent MTBF (mean time
between failure) statistics to help avoid relying on unreliable agents in the future.

- To uncover fraudulent agents, keep track of their performance over time and note
which agents consistently fail to produce results with the contracted cost, quality
and duration. To foil fraudulent agents, “kill” or “exile” them when they appear.

- To detect resource poaching, compare the average priority of pending tasks to the
average priority of in-work tasks. To resolve it, instruct subcontractors to preempt
current lower priority tasks and bid for the pending higher priority tasks.

This expertise is exploited, in our approach, by a knowledge-based exception handler (EH)
service, whose functional architecture is depicted in Figure 2.

Instrum
entation

Diagnosis

Resolution

Failure
mode KB

Exception
type KB

Resolution
plan KB

S

S

Problem solving agents Exception handling agents

Normal behavior

Exception
symptoms

Resolution
actions

Instrum
entation

Diagnosis

Resolution

Failure
mode KB

Exception
type KB

Resolution
plan KB

S

S

Problem solving agents Exception handling agents

Normal behavior

Exception
symptoms

Resolution
actions

Figure 2. Functional architecture for the exception handling service.

When new agents register themselves they specify the coordination protocol they use (e.g.
the CNET protocol). The EH service then consults its “failure mode” knowledge base to
create the appropriate “sentinel agents” needed to detect the exceptions characteristic of
that protocol. Sentinels work by monitoring communication between agents and by pro-
actively querying agents about their status when necessary. Whenever they detect a likely
exception symptom, they trigger the diagnostic component of the EH service, which
uncovers the underlying cause and enacts the interventions, instantiated from the resolution
plan knowledge base, needed to resolve the problem. The EH service requires that agents
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support at least a minimal set of EH-related message types (e.g. an “are you alive?” query,
a “cancel task” action, etc.), and relies upon several ancillary services such as an agent ID
authority (which certifies unique IDs for each agent type), a reputation server (which tracks
performance for each agent type), and a contract notary (that keeps track of which agents
are performing which tasks for whom). See (Klein and Dellarocas 1999) and (Dellarocas
and Klein 1999), as well as forthcoming papers from our group, for further details.

The potential advantages of this approach are manifold. “Citizen” agents can be
implemented much more simply, relying on relatively lightweight and efficient
coordination protocols. Exception handling performance can be improved by utilizing
services that can efficiently gather any necessary global state information, rely on
specialized knowledge bases to select appropriate interventions, and are uniquely possess
the widely-accepted legitimacy needed to take such interventions as killing agents or
canceling tasks.

4. The Experiments

We ran a series of experiments to test these claims in a multi-agent system running the
CNET protocol. These experiments focused on the agent death exception, since it is clearly
a potential problem in almost any real multi-agent system, and also because a well-
accepted “survivalist” approach to this exception (i.e. timeout/retry) exists for comparison
purposes.

The experiments all take place in a discrete event based multi-agent system simulator built
on top of the Swarm Simulation System (Minar, Burkhart, Langton and Askenazi 1996).
Our system allows one to emulate a world consisting of multiple host computers, each
running one or more agents and connected by network links, all with controllable speed
and failure frequency. The scenario consists of several dozens CNET agents, one per host,
interacting over a reliable network. Contractor agents send out an RFB with a specified
timeout period: potential subcontractors bid only if they become available during this
period (i.e. subcontractors perform only one task at a time). Bids are binding, which means
that subcontractors will bid on a new RFB only after the timeout for its pending bid
expired without an award being received (presumably because some other subcontractor
won the task). Contractors select the winning bids based solely on how quickly the bidders
claimed they could perform the task. Contractors re-send RFBs if no bids have been
received by the timeout period (presumably because no subcontractors with the needed
skills were available at that time). This CNET protocol is modeled on the one described in
(Smith and Davis 1978) and was chosen because it is simple and was shown by Smith et
al. to represent a reasonable design tradeoff in several test domains.

Our experiments explored the effect of three experimental conditions. The key independent
variable, of course, was whether the agents took a “survivalist” or “citizen” approach to
handling agent death. Survivalist agents rely on the standard timeout/retry mechanism to
handle agent death: If a subcontractor does not return results to its contractor by the
agreed-upon deadline, the contractor issues a new RFB for the task. Citizen agents, by
contrast, rely entirely on the EH services. Whenever a task has been awarded to a
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subcontractor, the EH service begins periodic polling of the subcontractor to check
whether it is still alive, which continues until the agent has died or returned the task results
to its contractor. If an agent dies, the EH service takes a series of coordinated actions:

- It notifies the matchmaker that this agent is dead and should therefore be removed
from the list of available subcontractors. This handles the “false matchmaker
positive” problem.

- If the agent is subcontracting to someone else, it immediately informs the
contractor that it should re-send the RFB for that task, thereby ensuring that the
contractor does not waste time waiting for results from a dead agent. Note that this
avoids the “unzippering” effect described above, because contractors will only re-
send the RFB when the subcontractor has actually died.

- If the agent is a contractor for some pending subtasks, a proxy agent is created to
try to find new customers for those “orphaned” subtask results. The proxy registers
itself with the matchmaker, so that it becomes eligible to receive RFBs. It then
waits for an RFB for the orphaned tasks, and submits a bid whose estimated
completion time accounts for the amount of time that has already been spent
processing those tasks, and is therefore likely to be highly competitive. This is a
reasonable strategy in domains where there is a standardized task decomposition,
so the replacement for the dead agent is apt to require the same subtask results that
the dead agent did. If the proxy wins the anticipated RFB, it forwards the results as
it receives them. Otherwise it keeps responding to RFBs until it wins or until the
task results become obsolete. This strategy is this designed to minimize wasted
work on orphaned tasks. In domains where results get obsolete very quickly, or
there is no standard task decomposition, it may be more appropriate to do without
the proxy-bidding agent and simply kill all orphaned tasks when the ultimate
customer for them has died.

The exception handler is capable of knowing the current contractor-subcontractor
relationships either by monitoring communication among agents, or by accessing
information contained in a “notary” agent, who records all contracts formed among agents
in the system. In either case, this information can be collected without the need to add any
complexity to individual contractor and subcontractor agents.

Our central hypothesis is that the “citizen” exception handling approach will significantly
reduce the average amount of time needed to complete tasks in which exceptions occur
(due to quicker detection of agent death, and the avoidance of the unzippering effect), as
well as reducing the overall system effort needed to perform tasks (by avoiding wasting
resources on orphaned tasks). We also explored the related hypotheses that the impact of
the EH services will depend on the nature of the task decompositions needed to perform a
task. More specifically, tasks that have deep task decompositions should benefit more
because in those cases the unzippering effect will be more severe with survivalist agents.
Task decompositions with long duration tasks should benefit more because the quicker
agent death detection offered by polling saves more time in absolute terms.
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In order to test the above hypotheses, we tested the contract completion performance of
four different agent configurations, whose parameters are summarized in Figure 3.

# Description # Top-Level
Contractors

#
Subcontractors

RFB timeout
(cycles)

Task duration
(cycles)

1 Short tasks, abundant subcontractors 3 50 100 1000
2 Short tasks, scarce subcontractors 3 16 100 10000
3 Long tasks, abundant subcontractors 3 50 100 1000
4 Long tasks, scarce subcontractors 3 16 100 10000

Figure 3. Summary of agent configurations tested.
In all configurations, top-level contractor agents execute a loop where they announce a
new top-level task, wait for bids, award the contract to the best bidder, wait to receive the
results and then stay idle a random amount of time before repeating the above steps.

In order to be completed, top-level tasks require the creation of task trees with depth 4 and
branching factor 2 (Figure 4). In other words, in order to complete a top-level task, a top-
level contractor has to seek two level-2 subcontractors, each of which has to seek two
level-3 subcontractors, and so on. Therefore, a single top-level task may involve up to 15
agents working simultaneously. To simplify the experiment, it is assumed that any
available subcontractor is capable of performing any task in a given task chain. The task
duration mentioned in Figure 3 above is the number of cycles that a contractor has to spend
after it has received the results of both its subcontracted tasks (“processing them”), before
it returns its result to its contractor.

Top-level
contractor

Level-2
subcontractors

Level-3
subcontractors

Level-4
subcontractors

Figure 4. Top-level tasks require the creation of a 4-level task tree.

For each of the four above configurations, three distinct simulation runs were performed:

a. Failure-free environment (baseline case)
b. Failure-prone environment, “survivalist” agents
c. Failure-prone environment, “citizen” agents supported by EH services

In the failure-prone case, all subcontractor agents had a “lifespan” (time until death) that
was selected for each agent randomly from a uniform distribution with probability
p=(100xshort task duration)-1 = (10xlong task duration)-1. When an agent dies, a new one is
created with the same skills but with a different unique ID and is registered with the
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matchmaker. This is done to keep the subcontractor population from shrinking over the
course of the experiment, thereby emulating a large and dynamic agent pool where the
population of subcontractors remains roughly constant.

Figure 5 summarizes the mean contract completion time relative to the failure-free
(baseline) case for survivalist and citizen agents in each of the four agent configurations
described above.

In configuration #1 (short tasks, abundant subcontractors), citizen agents with EH support
clearly outperformed survivalist agents and managed to almost eliminate the effects of
exceptions (mean completion time in the citizen case was less than 1% higher than the
mean completion time in the failure-free case).

Figure 5. Mean contract completion times in the four agent configurations tested.

In configuration #2 (short tasks, scarce subcontractors) we were somewhat surprised to
discover that survivalist agents outperformed citizen agents, especially for task chains of
length 2 (e.g. a single level of contracting). This phenomenon can be explained by
considering that, for short tasks (task length ~ 2 times the sentinel polling interval), the
relative benefit that comes from timely detection of agent death is rather small. On the
other hand, early detection causes more agents to re-announce their tasks and thus
increases the number of agents who compete for the, already overloaded, scarce
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subcontractors, even more. The net effect is that the EH mechanism slightly worsens the
bottleneck created by the scarce subcontractors. For longer task chains, the benefits of
placing orphaned subtasks compensate for the previous effect and the performance of the
system in citizen and survivalist cases seems to converge.

In configurations #3 and #4 (long tasks), citizens outperformed survivalists, as expected.
The difference in performance was particularly dramatic for longer tasks chains. The
explanation in this case is that, for longer tasks, the probability of multiple agent deaths in
the same task tree is correspondingly higher. In the survivalist case, each death may trigger
the “unzippering” effect described in Section 2, which would effectively double the task
completion time. In the case of multiple deaths, the “unzippering” effect would be
repeated, thus multiplying the mean completion time even more (to between 600% and
700% of the failure-free case). By avoiding the “unzippering” effect and attempting to find
new contractors for orphaned tasks, the citizen case managed to keep the mean completion
time at no more than 160% to 216% of the failure-free case.

In addition to the mean task completion time, we were also interested to compare the
standard deviation and maximum observed task completion time in each of the above
cases. Our rationale is that, in most environments, consistency is equally important to
efficiency. A system with a low mean completion time, but where some task instances take
a very long time to complete is bound to make some users extremely unhappy.
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Long Tasks, Abundant Subcontractors
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Figure 6. Maximum contract completion times in the four agent configurations tested.

Figure 6 summarizes the maximum observed task completion times in each of the tested
configurations 2. From a study of the charts it is clear that citizen agents had a lower
maximum observed completion time in all four configurations.

In conclusion, citizen agents have proven to perform more efficiently than survivalist
agents both in terms of lowering the mean as well as improving the consistency of contract
completion time in the face of exceptions. In only one case (short tasks with scarce
subcontractors) citizen agents performed slightly worse than survivalists. Even in that case,
the difference seems to disappear as the task chain length increases.

The only implementation requirements from the part of citizen agents in order for them to
participate in the exception handling scheme introduced in this paper is that they are
capable of responding to periodic “are you alive?” messages sent by exception handling
sentinels as well as to “cancel and reannounce task” messages sent when agent failures are
detected. Both these message handlers are extremely simple to implement and well worth
the added efficiency and consistency in the face of failures.

5. Contributions of the Work

The central contribution of the work presented here is to demonstrate empirically the
potential value of domain-independent exception handling services for an important type
of failure in multi-agent systems. As we have seen, this approach produces substantially
superior performance without complicating agent development, and reduces our reliance
on agents being correctly implemented.

These results make, we believe, a significant addition to the existing literature on reliability
in multi-agent systems. As we have already noted, there has been relatively little previous
work on multi-agent exception handling, and much of this has taken a “survivalist”
approach, which has the important shortcomings identified above. Several lines of research

                                                
2 Measurements of the standard deviation of the observed completion times are not included here due to the
lack of space. However, they follow patterns very similar to those of the maximum observed completion
times. The corresponding charts are available from the authors upon request.
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have begun to explore concepts similar to those presented here, but none as far as we know
have explored the combination of domain-independent exception handling implemented as
distinct services. Hägg (Hägg 1996) presents the concept of sentinel agents; these are
distinct services, which monitor the agent system and intervene when necessary by
selecting alternative problem solving methods, excluding faulty agents, or reporting to
human operators. This approach is not domain-independent, however: sentinels must be
customized for each new application. Kaminka et al (Kaminka and Tambe 1998) present
Social Attentive Monitoring (SAM), an exception handling approach wherein agents detect
exceptions via uncovering violations of normative relationships with their teammates, and
exploit a teamwork model to diagnose and fix these problems. This approach does have
generic elements, but it is limited to teamwork protocols like TEAMCORE (Tambe M
1997) and requires domain-dependent customization of the exception detection procedures.
Horling et al. (Horling, Lesser et al. 1999) have explored the use of domain-independent
tools to detect and resolve the exception wherein the agents have a harmfully inaccurate
picture of the inter-agent dependencies in their current context. This approach is limited to
a single exception type, however, and like SAM applies to just one class of coordination
protocol. Venkatraman et al (Venkatraman and Singh 1999) describe a generic approach to
uncovering agents that do not comply with coordination protocols. This approach only
addresses one subclass of exception types, however, and does not include a resolution
component.

Related work can also be found if we go farther afield into such disciplines as planning,
distributed systems, manufacturing process control, and the like. Distributed and real-time
systems research has produced useful techniques such as checkpointing and rollbacks
(Burns and Wellings 1996) (Mullender 1993), but these “one size fits all” techniques
achieve generality at the cost of the efficiencies that can result from coordination-
mechanism specific, albeit domain-independent, exception handling mechanisms. There
has also been substantial work in the planning and robotics communities on dealing with
unexpected world states (Traverso, Spalazzi et al. 1996) (Howe 1995) (Birnbaum, Collins
et al. 1990) (Broverman and Croft 1987) (Firby 1987) (Hindriks, de Boer et al. 1998). This
work focuses almost exclusively on exceptions (e.g. failed operations, unexpected events)
in the world manipulated by the agents, and not on exceptions concerning the agents
themselves. Finally, there has been substantial work on detecting and resolving exceptions
in computer-supported cooperative work (Mi and Scacchi 1993) (Chiu, Karlapalem et al.
1997) (Klein 1998) (Auramaki and Leppanen 1989) (Finkelstein, Gabbay et al. 1994) and
manufacturing control (Fletcher and Misbah 1999) (Adamides and Bonvin 1993) (Katz
1993) but this has been applied to a very limited range of domains (e.g. just software
engineering or flexible manufacturing cell control) and exception types (e.g. just
inappropriate task assignments).

In an important sense we can say that the approach presented in this paper attempts to
subsume much of the previous work in this area, in that our goal is to provide a unifying
framework to exploit exception handling techniques derived from multiple disparate
disciplines, for the benefit of improved robustness in open multi-agent systems.
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6. Future Work

We plan to pursue two concurrent lines of development in this work. One line will include
empirically and analytically evaluating different “survivalist” and “citizen” exception
handling approaches for a wider range of exception types and coordination protocols. It
seems clear that there are situations where a survivalist approach will be superior. Consider
for example the “refused award” exception, wherein a subcontractor declines to accept an
award from a contractor. This can happen, for example, if the award from the contractor
has been delayed for so long that the subcontractors’ binding bid expired and it accepted
some other award in the interim. The EH services can detect this exception using a timeout
(i.e. there is no result by the result deadline) or by directly querying the subcontractor after
the award to see if it accepted the task, but the quickest and least message-intensive
approach is simply for the subcontractor to let the contractor know it refused it’s award.
We would like to understand these tradeoffs and incorporate the insights so gleaned into
our growing knowledge base of domain-independent exception handling expertise.

A second line of work will be to increase the power and scope of our generic exception
handling technologies. We plan to extend to knowledge base underlying our tools to cover
a wider range of coordination mechanisms. This is a task of significant but reasonable
scope because there are relatively few multi-agent coordination protocols in use, and much
of the variation in them is due to differences in exception handling, as opposed to the
“core” coordination capability. We have already performed preliminary analyses of the
characteristic exceptions and domain-independent exception handling strategies for the
multi-level (Durfee and Montgomery 1990) and team-based (Tambe  1997) coordination
protocols. Other areas for development include the design of improved diagnostic
algorithms, including potentially model-based approaches, dealing with exceptions in the
EH service itself, and enabling effective interoperation between the EH services and agents
with survivalist capabilities.

The long-term goal of these efforts is to integrate these lines of work, and thereby provide
multi-agent system developers with a comprehensive knowledge base of well-founded
design guidelines, along with a suite of domain-independent component technologies that
enable them to much more easily develop more robust open agent systems.
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